Your browser does not support JavaScript!
江偉宏 副教授 new

研究專長

研究領域

  1. 奈米碳材合成與應用

近年來奈米碳材(carbon nanomaterials)的研究不只影響了物理、化學、材料科學以及工程學的研究方向,其優異的物理及化學特性(包括高導電特性,高導熱特性,高機械強度,高比表面積等)更提供工業界開發前瞻應用的可能性。奈米碳材主要是奈米結構化的碳材料,包括奈米碳管(carbon nanotube)、石墨烯(graphene)以及相關衍生結構等,其微觀結構會影響材料所表現的巨觀物理及化學特性。我們的主要研究興趣為開發奈米碳材合成以及結構控制技術,透過化學合成以及物理控制的方法調控奈米碳材的結構,進而控制奈米碳材的物理以及化學特性。相關產業應用可包括能源,光電,生醫,以及複合材料等。代表論文請參考(Chiang, W. H., and Sankaran, R. M., Nature Materials (2009), 8, 882-886)

  1. 大氣常壓微電漿技術

大氣常壓微電漿(microplasma)是一種可在大氣常壓下穩定產生的微型化電漿,其電漿體直徑可控制在微米(µm)等級,因此具有高能量密度的特性。搭配微反應器(microreactor)設計,前驅物在電漿內之滯留時間可調控在微秒(µs)至奈秒(ns)之間,可應用於金屬,合金以及無機奈米粒子(nanopartilce)的合成(<5 nm)。我們的研究興趣為開發大氣常壓微電漿技術,藉由微電漿化學的控制來調控奈米粒子的粒徑分布以及組成,並透過微反應器的設計,開發可連續合成高純度奈米粒子的乾淨製程。應用領域包括能源,光電,生醫以及催化反應等。代表論文請參考(Chiang, W. H., and Sankaran, R. M., Advanced Materials (2008), 20, 24, 4857-4861.)

 

目前研究方向

2013-2016年研究計畫

1.熱穩定奈米碳材高分子複合材料製備及其超快雷射光調整器應用開發

2.可量產石墨烯合成及官能化技術與感測應用開發

3.可控制石墨烯官能化及摻雜技術開發

4.綠色且低成本石墨烯奈米帶製備及官能化技術開發(2/2)

5.綠色且低成本石墨烯奈米帶製備及官能化技術開發(1/2)

2008-2017著作選列/代表近作

  1. Li, TJ ; Yeh, MH  ; Chiang, WH* ; Li, YS; Chen, GL ; Leu, YA  ; Tien, TC ; Lo, SC ; Lin, LY ; Lin, JJ  ; Ho, KC*,"Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction",SENSORS AND ACTUATORS B-CHEMICAL(2017),248,288-297.
  2. Satapathy, MK ; Chiang, WH* ; Chuang, EY; Chen, CH* ; Liao, JL ; Huang, HN,"Microplasma-assisted hydrogel fabrication: A novel method for gelatin-graphene oxide nano composite hydrogel synthesis for biomedical application",PEERJ(2017),5,文獻號碼:e3498
  3. Shie, MY ; Chiang, WH ; Chen, IWP ; Liu, WY ; Chen, YW*,"Synergistic acceleration in the osteogenic and angiogenic differentiation of human mesenchymal stem cells by calcium silicate-graphene composites",MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS(2017),73,726-735.
  4. Lin, TC ; Li, YS ; Chiang, WH ; Pei, ZW*,"A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon",BIOSENSORS & BIOELECTRONICS(2017),89,511-517,子輯:1 特刊:SI
  5. Leu, YA ; Yeh, MH ; Lin, LY* ; Li, TJ; Chang, LY ; Shen, SY ; Li, YS  ; Chen, GL ; Chiang, WH *; Lin, JJ * ; Ho, KC*,"Thermally Stable Boron-Doped Multiwalled Carbon Nanotubes as a Pt-free Counter Electrode for Dye-Sensitized Solar Cells",ACS SUSTAINABLE CHEMISTRY & ENGINEERING(2017),5,1,537-546.
  6. Manna, K, Huang, H.-N., Li, W-Ti, Ho, Y-H, and Chiang, W. H.*, “Toward Understanding the Efficient Exfoliation of Layered Materials by Water-Assisted Cosolvent Liquid Phase Exfoliation”, Chemistry of Materials (2016), 28, 7586-7593.
  7. Chiang, W. H.*, Hsieh, C.-Y., Lo, S.-C., Chang, Y-C, Kawai, T., and Nonoguchi, Y.*, “C/BCN Core/Shell Nanotube Films with Improved Thermoelectric Properties”, Carbon (2016), 109, 49-56.
  8. Li, Y-S, Liao, J.-L., Wang, S.-Y., and Chiang, W. H.*, “Intercalation-assisted longitudinal unzipping of carbon nanotubes for green and scalable synthesis of graphene nanoribbons”, Scientific Report (Nature Publishing Group) (2016), 6, 22755
  9. Manna, K, Hsieh, C.-Y., Lo, S.-C., Li, Y-S, Huang, H.-N., and Chiang, W. H.*, “Graphene and Graphene-analogue Nanosheets Produced by Efficient Water-assisted Liquid Exfoliation of Layered Materials”, Carbon (2016), 105, 551-555.
  10. Kung, C.-W., Li, Y.-S., Lee, M.-H., Wang, S.-Y., Chiang, W.H.*, and Ho, K.-C.*, “In-Situ Growth of Porphyrinic Metal-Organic Framework Nanocrystals on Graphene Nanoribbons for Electrocatalytic Oxidation of Nitrite”, Journal of Materials Chemistry A (2016), 4, 10673-10682
  11. Luo, X.-F., Wang, S.-Y., Tseng, C.-M., Lee, S.-W., Chiang, W. H.*, Chang, J.-K.*, “Microplasma-assisted bottom-up synthesis of graphene nanosheets with superior sodium-ion storage performance”, Journal of Materials Chemistry A (2016), 4, 7624-7631. Selected as the inside back cover.
  12. Wang, CD., Li, Y.S., Jiang, JJ., and Chiang, W. H.*, “Controllable Tailoring Graphene Nanoribbons with Tunable Surface Functionalities: An Effective Strategy toward High-Performance Lithium-Ion Batteries”, ACS Applied Materials and Interface (2015), 7, 31, 17441–17449.
  13. Chiang, W. H., and Sankaran, R. M.*, “Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)Fe(1-x) nanoparticles”, Nature Materials (2009), 8, 882-886.
  14. Chiang, W. H., Sakr M., Gao, X. P. A., and Sankaran, R. M.*, “Nanoengineering NixFe1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes, ACS NANO (2009), 3, 12, 4023-4032.
  15. Chiang, W. H., and Sankaran, R. M.*, “Synergistic effects in bimetallic nanoparticles for low temperature carbon nanotube growth“, Advanced Materials (2008), 20, 24, 4857-4861. 

 

榮譽獲獎

²  2016, 教學傑出,國立台灣科技大學。

²  2016, 傑出論文,台灣化學感測器科技協會。

²  2015, 學術勵進獎台灣化學會

²  2015, 最佳論文獎中國程師學會

²  2014, 年輕學者研究獎,國立台灣科技大學。

²  2005, Case Prime Fellowship, Case Western Reserve University, USA

 

 

 

 

 

最後更新2017/07/26

瀏覽數