Advanced Physical Chemistry

(1) Explain the following terms: (20%)
 (a) Micelles and Hydrophobic interactions
 (b) Fluorescence and Phosphorescence

(2) Give the derivation and state the reasoning for the Boltzmann distribution law. (15%)

(3) The eigenfunction for a 1s electron of a hydrogen atom is given by
 \[\Psi = N e^{-r/a_0}, \] where \(a_0 \) is the radius of the first Bohr orbit for hydrogen, and
 \(N \) is the normalization constant.
 (a) Show that the radius at which there is a maximum probability of finding a
 1s electron (in any direction) is just \(r_{\text{max}} = a_0 \). (10%)
 (b) Derive the normalization constant (\(N \)) and calculate the mean distance \(<r_{1s}> \) between
 the nucleus and 1s electron. (assume that \(a_0 = 52.9 \) pm). (15%)

 \[\int_0^\infty x^n e^{-ax} \, dx = n!/a^{n+1} \]

(4) Sketch and then tell the first three diffraction planes for the fcc and bcc lattice.
 How can you tell a molecular crystal whether it has fcc or bcc structure? (10%)

(5) Two blocks of the same metal are of the same size but are at different temperatures,
 \(T_1 \) and \(T_2 \). These blocks of metal are brought together and allowed to come to the
 same temperature.
 (a) Express the entropy change in terms of \(C_p \), \(T_1 \) and \(T_2 \). (10%)
 (b) Show that the entropy change in the problem above is spontaneous and in agreement
 with the second law of thermodynamics. (10%)

(6) For the reaction \(\text{H}_2\text{O} \xrightleftharpoons[k_{-1}]{k_1} \text{H}^+ + \text{OH}^- \), the relaxation time, \(\tau \) (sec) may be written as
 \[\tau = \frac{1}{k_1 + k_{-1}([(\text{H}^+)] + [\text{OH}^-])} \]
 If \(\tau \) is \(3.6 \times 10^{-6} \) sec, what are the values of \(k_1 \) and \(k_{-1} \)? (10%)