1. The rain was scare until April of this year. It seems that making pure water from seawater is a way for emergency usage in a drought. Figure 1 is a schematic of producing pure water from seawater by distillation. The seawater (mole ratio of ions $x_i = 0.02$) at 100 °C is flowing into a tank which is evacuated down to 0.98 atm. Under this condition, the seawater boils and the vapor is compressed up to 1 atm so as to condense to pure water.

Question 1: Considering that seawater obeys ideal solution behavior, please write down the relation between the vapor pressure of pure water (P_0) and the vapor pressure of water in seawater (P).

Question 2: If the pumping is a reversible isothermal compression process, write down the work necessary for pumping 1 mol of water vapor from P to P_0. Also express the work done (w) as a function of x (using the relation: $\ln(1-x) = -x$, when x is far less than 1).

Question 3: Reverse osmosis is also a technique to desalinate seawater which applies a semipermeable membrane letting water molecules pass through but the ions not (Fig. 2). Considering that this process also operates in a reversible manner, i.e., the pressure exerted at the seawater side is just the osmotic pressure of the seawater system (π), please start from (i) ideal solution equation: $\overline{\mu} = \mu_i + RT \ln x_i$ (where $\overline{\mu}$ is the component chemical potential, μ_i is the chemical potential in pure state, and x_i is the mole ratio of the component) and (ii) $du = -SdT + VdP$:

(a) Please derive osmotic pressure of seawater (π) as a function of the mole ratio of ions (x_i) in the seawater.

(b) Show that the work (w) necessary for producing 1 mol pure water by reverse osmosis technique is $w = x_i RT$ (R is the ideal gas constant and T is the temperature). Please also compare this result with the outcome in question 2 and explain why. (30%)

![Fig. 1 distillation method](image1)

![Fig. 2 osmotic pressure of the seawater system](image2)
2. Aqueous emulsions of perfluorochemicals are being considered as “artificial bloods” because of their high oxygen solubility. At 25°C and an oxygen pressure of 1 atm, 384 ml of oxygen gas (measured at 25°C and 1 atm) dissolve in 1 liter of perfluorotributylamine, (C₆F₁₃)₃N, which has a liquid density of 1.883 g/ml.

Question 1: Determine the Henry’s law constant, in units of atmospheres, for oxygen dissolved in perfluorotributylamine. The corresponding value for oxygen dissolved in water is 4.38 × 10⁴ atm.

Question 2: The blood substitute *Oxypherol* is an emulsion of 20% perfluorotributylamine and 80% water by volume. Estimate the volume of oxygen gas (measured at 25°C and 1 atm) dissolved in a liter of liquid when *Oxypherol* is equilibrated with air at 25°C. (20%)

3. The virial equation gives the compressibility factor for gases as a power series as:

\[
Z = \frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \cdots \quad (1)
\]

where \(B \) is the second virial coefficient, \(C \) is the third virial coefficient, \(D \) is the fourth, and so on. The first term on the right is unity, and by itself provides the ideal-gas value for \(Z \). The remaining term provide corrections to the ideal-gas value, and of these the second term \(B/V \) is the most important. Statistical mechanics provides \(B \) for simple, spherically symmetric molecules as

\[
B = 2\pi N_A \int_0^\infty (1 - e^{-\Gamma(r)/kT}) r^2 dr \quad (2)
\]

where \(N_A \) is Avogadro’s number, \(\Gamma(r) \) is the potential function.

Question 1: State briefly an experimental method to determine the second virial coefficient \(B \).

Question 2: Second virial coefficient can be corrected to the potential function only if the form of the potential function is known. Lennard-Jones’ form of Mie’s potential is the most widely used and is given as

\[
\Gamma(r) = 4\varepsilon[(\sigma/r)^{12} - (\sigma/r)^6], \quad (3)
\]

where \(\varepsilon \) is the depth of the energy well, \(\sigma \) is the collision diameter, and \(r \) is the distance. Please draw a graph to show the meaning of each term in eq. (3).

Question 3: Usually, evaluating second virial coefficient \(B \) from Lennard-Jones’ potential requires numerical technique. Instead, a crude potential named the “square-well potential” which has the general shape of the Lennard-Jones function, can be used to make mathematics easier. The square–well potential function is
\[\Gamma = \begin{cases} \infty & \text{for } r \leq \sigma \\ -\varepsilon & \text{for } \sigma < r \leq l\sigma \\ 0 & \text{for } r \geq l\sigma \end{cases} \]

where \(l \) is the reduced well width. The square-well potential leads to

\[B = \frac{2}{3} \pi N_A \sigma^3 \left[1 - (l^3 - 1) (e^{\frac{\varepsilon}{kT}} - 1) \right] \]

From the above result, explain the meaning of the first term in the square brackets (i.e., 1) and the second term. Also explain why \(B \) is usually negative at low temperature and turns to positive at high temperature. \(\text{(30\%)} \)

\textbf{(4)} The energy \(E \) in a canonical ensemble, which in classical thermodynamics is the internal energy \(U \), is given by \(U = E = \sum_i p_i^* E_i \), where \(p_i^* \) is the probability that a given system of the canonical ensemble is in quantum state \(i \) with the energy eigenvalue \(E_i \). Note that \(p_i^* = \frac{e^{-\beta E_i}}{\sum_i e^{-\beta E_i}} \) (where \(\beta \) is a mechanical parameter as \(\beta = \frac{1}{kT} \), \(k \) is the Boltzmann constant and \(T \) is the temperature) and \(dE_i = (\frac{\partial E_i}{\partial V})_N dV \) \((N \text{ is the number of molecules, } V \text{ is the volume})\).

\textbf{Question 1:} Start from the differentiation of \(dE_i \) and compare it with the classical thermodynamics \(dU = TdS - PdV \) to show the statistical analogue for the entropy \(S \) to be

\[S = -k \sum_i p_i^* \ln p_i^* . \]

\textbf{Question 2:} Under what condition does the entropy \(S \) turn to the so-called the Boltzmann relation \(S = k \ln W \) \((W \text{ is the thermodynamic probability})\)? \(\text{(20\%)} \)